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Regulator of G protein signalling (RGS) proteins are

GTPase-activating proteins for heterotrimeric G protein

a subunits, and are therefore physiologically and

pathophysiologically important negative regulators of

G-protein-coupled receptor signalling in the cardiovascular

system. Owing to the functional redundancy of many of the

20 RGS, and more than 20 RGS-like, proteins even within

a single cell, animal models shedding light on the functions

of individual RGS proteins are often missing. Nevertheless,

RGS2 is a member of this protein family, for which specific

functions in the vasculature and the heart are now emerging.

Recent data show that the 519-amino acid RGS3, the only RGS

protein with an additional G protein bg dimer binding domain,

largely alters the signalling of Gi proteins to the monomeric

GTPases Rac1 and RhoA in cardiomyocytes. In addition, an

alternative approach using transgenic animals expressing

RGS-resistant G protein a subunits now highlights the

contributions of RGS proteins to distinct signalling pathways in

the heart.
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Introduction
G-protein-coupled receptors (GPCRs) are involved in the

regulation of virtually every physiological process. They

catalyse GDP/GTP exchange at a coupled heterotrimeric

G protein (Gabg), thereby promoting dissociation of the

heterotrimer into a free, GTP-liganded Ga-subunit and a

Gbg dimer. Both Ga and the Gbg dimer then regulate

the activity of various effectors. Regulator of G protein

signalling (RGS) proteins were first identified as GTPase-

activating proteins (GAPs), which accelerate the intrinsic

GTPase activity of Ga proteins. As the duration of the
www.sciencedirect.com
G protein activation cycle is primarily controlled by GTP

hydrolysis, RGS proteins are important regulators for

GPCR-induced signalling. All RGS proteins share a

120-amino-acid RGS homology domain, which mediates

the GTPase-accelerating activity at Ga subunits. In

mammals, 20 distinct genes for ‘classical’ RGS proteins

have been identified and divided into four subfamilies

(RZ/A: RGS17, 19 and 20; R4/B: RGS1–5, 8, 13, 16 and 21;

R7/C: RGS6, 7, 9 and 11; R12/D: RGS10, 12 and 14). All

RGS proteins are GAPs for Gai/o family members and

many also act on Gaq/11 proteins, but none affect the

GTPase rates of either Ga12/13 or Gas family members

[1–3]. Most R7/C and R12/D proteins have additional

functional domains, whereas the RZ/A and R4/B proteins

do not. R7/C family members contain a Ga-like domain

and form requisite dimers with the atypical Gb subunit

Gb5. RGS12 and RGS14 contain a GoLoco motif [4],

which binds to isolated Gai and impedes GDP dis-

sociation in solution, although it could also confer other

activities [5]. One splice variant of the atypical R4/B

family member RGS3 is able to bind free Gbg dimers [6].

In addition, there are also approximately 20 related

‘RGS-like’ proteins, of which some have GAP activity

[1–3]. Notably, the three members of the p115RhoGEF

Rho guanine nucleotide exchange factor subfamily are

the only RGS-like proteins with GAP activity for G12/13

proteins.

Is there functional redundancy of RGS
proteins in the cardiovascular system?
All mammalian cells (e.g. cardiomyocytes [7]) express

at least a few different RGS proteins with GAP activity

for Gi/o and Gq/11. Given that RGS proteins tend to produce

their effects over comparable concentration ranges

(generally mid-to-high nanomolar in vitro [1–3]), the abun-

dance of an RGS protein should correlate with its contri-

bution to the total GAP activity within a cell. Therefore,

questions regarding promiscuous and redundant functions

of RGS proteins have been raised in the past. Nowadays,

there is increasing evidence that specific interactions occur

between certain signalling systems and RGS proteins. RGS

proteins are able to bind to GPCRs, effector molecules,

scaffold proteins and regulators that govern their avail-

ability and or activity [8�,9�]. Taking into account that the

expression of several RGS proteins (e.g. RGS2, RGS4 and

RGS16) can be rapidly induced by different stimuli

[10–12], further specific actions of RGS proteins can be

anticipated. Nevertheless, only two viable knockout mice

for RGS proteins with specific phenotypes have been

published. The first protein, RGS9-1 [13], has a specific

function in regulating photoreceptor signal transduction;
Current Opinion in Pharmacology 2007, 7:201–207
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the second, RGS2 [14], is of interest in the cardiovascular

system and will be discussed below.

The lack of further reported phenotypes of knockout mice

argues for considerable redundancy among RGS protein

family members. Furthermore, in contrast to the rapid

induction of RGS proteins mentioned above, antidromic

regulation might occur if the respective stimuli persists for

longer periods of time (e.g. downregulation of RGS2 in

cardiac hypertrophy [15�], and upregulation of RGS4 in

cardiac hypertrophy [16] and human heart failure [17,18]).

Therefore, the physiological and pathophysiological role of

a specific RGS protein in cardiovascular tissues is often

obscure. This short review highlights, firstly, the role of

RGS2 and RGS3 (see also Update) in the cardiovascular

system and, secondly, an interesting model that has

recently been developed as a result of transgenic mice

carrying Gai2 subunits resistant to the GAP function of

RGS proteins [19��,20��]. This method is ingenious at

circumventing methodological problems caused by the

tandem arrangement of many RGS genes on one chromo-

some [21], which makes it difficult to create mice carrying

more then one depletion of closely related RGS genes.
Figure 1

Role of RGS2 in regulation of vascular tone. RGS2 negatively regulates Gq-

vasopressin, noradrenaline) by accelerating the GTP hydrolysis of activated

of the known Gaq effectors phospholipase C b (PLCb) and Gaq-regulated R

activity of RGS2 appears to be controlled via phosphorylation by cGMP-de

of vasodilators (e.g. bradykinin, acetylcholine, endothelin-2) that induce nitric

guanylyl cyclase (GC) in the smooth muscle cell. Enhanced RGS2 expressio

angiotensin II exposure and is observed in hypotensive patients. By contras
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Role of RGS2 in cardiovascular function
RGS2 is unique owing to its preferential interaction

with Gaq/11 (and Gas) and its low affinity for Gai

[22,23]. RGS2 binds either directly (M1 muscarinic recep-

tor [24], or a1A- [25,26] and b2-adrenoceptors [27]) or

indirectly via interaction with a scaffold protein (e.g. at

the a1B-adrenoceptor [28�]) to GPCRs. In addition, it has

been shown that RGS2 directly binds to Gas (without

displaying GAP activity for this Ga subunit [29]) and to

different adenylyl cyclase (AC) isoforms [30,31]. Both

might contribute to the reported inhibition of AC activity

by RGS2 [27,29–31]. Through its unique G protein

selectivity for Gaq/11, RGS2 appears to play a key role

in cardiovascular pathophysiology, in which deleterious

processes are often initiated via Gq/11-coupled GPCRs;

for example, in blood vessels, many contractile responses

are mediated via Gaq (Figure 1). Furthermore, the

expression of RGS2 is upregulated in response to angio-

tensin II stimulation in vascular smooth muscle cells

[11,32]. Furthermore, the GAP activity of RGS2 is

increased in the vasculature by the nitric oxide–cGMP

pathway via phosphorylation by cGMP-dependent kinase

Ia [18,33�,34�]. A vascular role for RGS2 is also implied by
coupled receptors for vasoconstrictors (e.g. angiotensin II,

Gaq (Ga�q) in vascular smooth muscle cells. Thereby, the activity

ho guanine nucleotide exchange factors (RhoGEFs) is lowered. The

pendent kinase Ia (cGKIa). Thereby, RGS2 activity is under control

oxide (NO) production in endothelial cells and thus stimulation of soluble

n (") that increases negative regulation occurs in response to prolonged

t, decreased RGS2 expression occurs in hypertension (#).
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the observed correlation between the elevated and

reduced expression of RGS2 and hypo- and hyper-ten-

sion, respectively, in humans [35,36�]. Correspondingly,

RGS2 knockout mice exhibit an elevation in mean arter-

ial blood pressure, which could reflect enhanced and/or

prolonged vascular contractile responses to a1-adrenocep-

tor and angiotensin II receptor stimulation [18,37]. RGS2

knockout animals also display moderate hypertrophy of

the aorta and renal vessels in these studies [18,37].

Several studies have indicated that RGS2 might be import-

ant in cardiac hypertrophy initiated by Gq/11-coupled

receptors (Figure 2). RGS2 mRNA is selectively
Figure 2

Role of RGS2 in regulation of cardiac hypertrophy. In cardiomyocytes,

RGS2 negatively regulates Gq-coupled receptors that induce cardiac

hypertrophy (e.g. a1-adrenoceptors, endothelin receptors and

protease-activated receptors) either by accelerating GTP hydrolysis or

by scavenging activated Gaq (Ga�q). Again, the activity of the known Gaq

effectors phospholipase C b (PLCb) and Gaq regulated Rho guanine

nucleotide exchange factors (RhoGEFs) is lowered. Enhanced RGS2

expression ("), which increases negative regulation, occurs in response

to cardiomyocyte stimulation with hypertrophy-inducing GPCR

agonists (e.g. phenylephrine). Animal models with persistent Gq

activation (i.e. cardiac overexpression of Ga�q) displayed reduced

cardiac RGS2 expression (#).
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upregulated in neonatal rat cardiomyocytes by the

a1-adrenoceptor agonist phenylephrine [11]. A recent

report additionally demonstrates enhanced expression

of RGS2 in response to sustained activation of the

AC–cAMP system in osteoblasts [38�], a response that

might similarly occur in cardiomyocytes. The overex-

pression of RGS2 in cardiomyocytes essentially elimi-

nated any increases in cell size and genetic markers of

hypertrophy in response to a1-adrenoceptor stimulation

[11,39]. However, the exact mechanisms through which

RGS2 produces its observed protective effects in car-

diomyocytes remain to be determined, as both GTPase

acceleration and scavenging (‘effector antagonism’) of

activated Gaq has been observed with RGS2 [24,25].

Other GPCR signals associated with hypertrophy,

including those mediated via endothelin-1, angiotensin

II and protease-activated receptors, might also be

blocked by RGS2, as these signals have all been shown

to be inhibited by RGS2 in cardiomyocytes [39,40]. In

contrast to the acute protective effects of RGS2

observed in isolated neonatal cardiomyocytes [11], a

recent study found RGS2 to be selectively downregu-

lated during the early onset of cardiac hypertrophy

in vivo in two different models with enhanced Gq/11

signalling [15�]. Corresponding experiments examining

hypertrophy and Gaq signalling in isolated neonatal

rat cardiomyocytes showed that the small interfering

RNA-mediated suppression of RGS2 expression

increased both the hypertrophic effect and phospho-

lipase Cb stimulation induced by a1-adrenoceptors and

endothelin-1 [15�].

Somewhat surprisingly, no overt changes were seen in the

cardiac function of RGS2�/�mice up to 6 months of age

[37]. Therefore, it seems likely that RGS2 knockout

animals develop compensatory mechanisms in pathways

that are normally repressed by this RGS protein in the

myocardium. Consistent with this notion, a study on

pancreatic acinar cells from RGS2�/� mice showed

Gaq-mediated intracellular calcium transients to be lar-

gely normalized owing to decreased calcium influx into

the cytosol from the ER and extracellular space, as well as

increased calcium efflux through pumps in the ER mem-

brane and plasma membrane [41]. Taken together, the

available evidence implies a protective role for RGS2

against hypertrophy-associated GPCR signals in the

heart, although clearly more studies are needed to eluci-

date the factors that control RGS2 expression during this

disease process.

RGS-resistant Ga subunits to dissect
cardiovascular signalling pathways
As mentioned above, several RGS proteins have overlap-

ping specificities, and their role in distinct pathways is

often difficult to dissect owing to their functional redun-

dancy. Similarly, even without consideration of the influ-

ence of RGS proteins, the contribution of an individual
Current Opinion in Pharmacology 2007, 7:201–207
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G protein a-subunit isoform to a specific physiological

response is often difficult to analyse.

For example, it has been shown that the negative chron-

otropic effect of Gi-coupled receptors (e.g. M2 muscarinic

and A1 adenosine receptors) involves several members of

the Gi/o subfamily (Gi2, Gi3 and different splice variants of

Go [42–44]). In addition, at least three different ion currents

(IK,ACh, If and ICa,L) are regulated via this pathway. The

IK,Ach current is caused by Gi/obg-mediated activation of

G-protein-regulated potassium channels (GIRKs) [45].

The inhibition of cardiac hyperpolarisation-activated cyc-

lic nucleotide-regulated cation channels carrying the If

current [46] depends upon the decrease of cAMP pro-

duction, which also contributes to the inhibition of ICa,L

by lowering the protein kinase A (PKA)-dependent

phosphorylation of L-type calcium channels.

A recent study [19��] used the knock-in of RGS-insensitive

mutants to analyse the individual contributions of Gai2

and Gao to the negative chronotropic effects of M2

muscarinic and A1 adenosine receptors. The strength

of this approach lies within the method, which mimics

the natural arrangement and stoichiometry of signalling

proteins. The concentration dependence of the agonist
Figure 3

RGS proteins control Gi/o-mediated negative chronotropic responses in card

and IK,Ach, which are carried by hyperpolarisation-activated cyclic nucleotid

inward rectifying potassium (GIRK) channels, respectively, contribute to neg

directly, whereas the ICa,L is indirectly (via phosphorylation by PKA), regulate

b1-adrenoceptors (b1-AR) and b2-adrenoceptors (b2-AR). The Gi/o-coupled

exert negative chronotropic effects by inhibiting both AC and the activation o

actions are largely dependent upon Gao and minimally involve regulation of

from both Gai2 and Gao to activate GIRK, with this being the main mechani

controlled by RGS proteins. Interestingly, the potential effects occurring via

supressed by RGS proteins under physiological conditions.
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effects confirmed that, under physiological conditions,

there is an impartial overlap with respect to the coupling

of the studied GPCRs to specific Gi/o proteins. The

authors demonstrated major sensitisation of the carba-

chol-induced negative chronotropy by elimination of

RGS protein control on Gai2. As this sensitisation was

entirely abolished by a blocker of GIRK, a preferential

coupling of M2 muscarinic receptors to GIRK via

Gi2-derived Gbg dimers can be assumed (Figure 3).

Unexpectedly, A1 adenosine receptors diminished heart

rate largely through Gao-dependent inhibition of AC and

subsequent inhibition of If and ICa;L.

Furthermore, the authors provided new insights into the

controversially discussed coupling of Gi/o family members

to b2-adrenoceptors. It is well-known that, in regular heart

function, b2-adrenoceptor stimulation in concert with the

more abundant b1 adrenoceptors exerts positive chrono-

tropic and inotropic effects through activation of the

Gas–AC–PKA pathway. In heart failure, however, the

potential coupling of b2-adrenoceptors to Gi proteins is

assumed to be cardioprotective [47,48]. Surprisingly, the

use of RGS-resistant mutants revealed profound coupling

of the b2-adrenoceptors to Gai2 and Gao, even under

physiological conditions. In the presence of the Gai2
iomyocytes. In cardiomyocytes, three different currents, If, ICa,L

e-regulated cation (HCN), L-type Ca2+ and G-protein-regulated

ative chronotropic effects of Gi/o-coupled receptors. The If is

d by cellular cAMP levels. AC activity is stimulated by Gs-coupled

M2 muscarinic acetylcholine (M2-R) and adenosine A1 (A1-R) receptors

f GIRK by Gi/o-derived Gbg dimers. A1-R-mediated negative chronotropic

GIRK currents. By contrast, the M2-R utilizes Gbg dimers released

sm mediating its negative chronotropic response. Both pathways are

the coupling of b2-ARs to Gi/o proteins appear to be completely

www.sciencedirect.com
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mutant, b2-adrenoceptor stimulation primarily induced a

negative chronotropic response, which was replaced by an

increase in the heart rate at higher agonist concentrations.

These data indicate that the naturally occurring coupling

of b2-adrenoceptors to Gi/o proteins under physiological

conditions is blunted by RGS proteins, and thus Gas-

mediated activation of AC prevails. These data indicate a

completely unanticipated function of cardiac RGS

proteins that awaits further analysis.

The authors meanwhile analysed the transgenic Gai2

(G184S) mutant mice on a broader basis [20��]. They

demonstrated a complex phenotype affecting multiple

organ systems (i.e. heart, myeloid, skeletal muscle and

central nervous system). Even heterozygotes (with one

intact Gai2 allele) exhibited reduced viability and

decreased body weight. The transgenic animals showed

stunted growth of long bones, a markedly enlarged spleen,

elevated neutrophil counts, an enlarged heart, and beha-

vioural hyperactivity. The authors therefore concluded

that the loss of RGS action on a single Ga subunit

(i.e. Gai2) produces dramatic and pleiotropic alterations.

This phenotype is much more severe than those typically

seen for individual RGS protein knockouts.

In future studies, a thorough understanding of RGS

protein function in the cardiovascular system and other

organs might be achieved by a double-mutant approach,

rescuing specifically one pair of RGS and Ga species.

Indeed, such a strategy has been reported for the inter-

actions of RGS16 and RGS4 with Gai1 and Gaq, respect-

ively [49]. In this approach, a highly conserved Glu

residue on the RGS protein, and a highly conserved

Lys residue on Ga, are substituted by a Lys and a

Glu, respectively. Whereas one of these substitutions

yielded significantly reduced RGS–Ga interactions with

wild-type partners, the two complementary point

mutations together form an interacting salt bridge at

the RGS–Ga interaction surface. Thereby, RGS and

Ga mutants were developed that exhibit significantly

reduced interactions with their ‘natural’ counterparts,

but which, together, form a fully functional RGS–Ga

pair as proven by in vitro GAP activity and functional

inhibition at the cellular level. By applying such mutant

pairs to transgenic animals [20��], divergent functions of

apparently redundant Ga isoforms [48,50] and RGS

proteins [51,52] can be addressed at a new level of

scientific rigour and (patho)physiological significance.

Conclusions
A significant amount of work on RGS proteins has been

performed in recent years that has clearly provided evi-

dence for important functions of these molecules in

signalling cascades in almost every cell-type. Certainly,

RGS and RGS-like proteins are more than GAPs for Ga

subunits; they interact with GPCRs, effector molecules,

scaffold proteins and additional regulators. Some of these
www.sciencedirect.com
proteins (e.g. the p115RhoGEF family members) unify

effector and GAP activities within same protein [1–3].

Despite all of the data on RGS proteins which have been

accumulated so far, our knowledge of the specific func-

tion(s) of a distinct family member in the physiology and

pathophysiology of the cardiovascular system is still lim-

ited. Owing to functional redundancies of several highly

related RGS proteins and also experimental obstacles,

new approaches have to be applied to future research on

RGS proteins to indeed make them the ‘the next thera-

peutic target’, as anticipated in a recent review [3].

Update
RGS3 is an abundant RGS protein in the heart that exists in

several splice variants. At least two of these variants exhibit

an extended amino-terminal domain in addition to the

RGS domain [53]. Out of these, the 519-amino acid isoform

of RGS3 (RGS3L) binds Gbg-dimers with a unique inter-

action domain located between amino acids 319 and 458

[6]. It thereby acts as a Gbg scavenger and inhibits the

Gbg-induced effector activation independently of its GAP

activity. A recent manuscript now reports that, by binding

to Gbg, RGS3L acts as molecular switch regulating the

activation of Rho GTPases by prototypical Gi-coupled

receptors in cardiomyocytes [54��]. At a low expression

level of RGS3L, these receptors induce the activation of

Rac1 using the canonical Gibg- and phosphoinositide

30-kinase-dependent pathway. In contrast, at increased

expression levels of RGS3L, these receptors activate RhoA

but not Rac1, apparently through the same signalling

pathway. The expression of RGS3L in cardiomyocytes

is under control of fibroblast growth factor 2, a known

cardioprotective stimulus. Therefore, the differential acti-

vation of Rac1 and RhoA, depending upon RGS3L expres-

sion and the distinct downstream signalling pattern, might

contribute to these cardioprotective effects.
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